
NUMEN CYBER

1 Confidential

Smart Contract Audit Report
 NFTSTAR Smart Contract

6 June 2022

Numen Cyber Labs - Security Services

Numen Cyber Technology Pte. Ltd.
11 North Buona Vista Drive, #04-09,
The Metropolis, Singapore 138589

Tel: 65-63555555
Fax: 65-63666666
Email: sales@numencyber.com
Web: https://numencyber.com

NUMEN CYBER

2 Confidential

Table of Content

1	Executive Summary .. 3

1.1 Methodology .. 3

1.2	Disclaimer ... 5

2	Findings Overview .. 5

2.1	Summary .. 5

2.2 Key Findings .. 6

3 Detailed Description of Findings ... 6

3.1 Incorrect Setting of MaxAmount and MaxLimit ... 6

3.2 Improper Setting of Opening flag .. 11

3.3 Risks in the authority transfer mechanism .. 11

3.4 grantLimits Function is not compared with the Total Supply of the token 13

3.5 giftLimit variable declared but not used .. 14

3.6 Multiple Compiler Versions Declared .. 15

3.7 Improper Usage Of Public Functions ... 16

3.8 Missing Emit Events .. 19

3.9 Optimization of Variable Type ... 20

4	Conclusion .. 21

5	Appendix ... 21

5.1 Basic Coding Assessment .. 21

5.2 Advanced Code Scrutiny ... 23

References ... 24

NUMEN CYBER

3 Confidential

1	Executive Summary

Numen Cyber Technology was engaged by NFTSTART to review smart contract
implementation. The assessment was conducted in accordance with our systematic
approach to evaluate potential security issues based on customer requirements. The
report provides detailed recommendations to resolve the issue and also provides
additional suggestions or recommendations for improvement.

A High severity finding was identified in no-transaction-fee mining and the inability
to create new transactions when large transactions were involved.

The outcome of the assessment outlined in chapter 3 provides the system's owners
with a full description of the vulnerabilities identified, the associated risk rating for
each vulnerability, and detailed recommendations that will resolve the underlying
technical issue.

1.1 Methodology

To standardize the evaluation, we define the following terminology based on OWASP
Risk Rating Methodology [10] which is the gold standard in risk assessment using the
following risk models:

• Likelihood: represents how likely a particular vulnerability is to be uncovered and
exploited in the wild.

• Impact: measures the technical loss and business damage of a successful attack;

• Severity: determine the overall criticality of the risk.

Likelihood and impact are categorized into three ratings: High, Medium, and Low.
Severity is determined by likelihood and impact and can be classified into four
categories accordingly, Critical, High, Medium, Low shown in table 1.1.

Table 1.1: Overall Risk Severity

NUMEN CYBER

4 Confidential

To evaluate the risk, we go through a list of check items and each would be labeled
with a severity category. The audit was performed in a systematic approach guided
by a comprehensive assessment list carefully designed that targets known and
impactful security issues. If our tool or analysis does not identify any issue, the
contract is considered safe regarding the assessment item. For any discovered issue,
we might further deploy contracts on our private test environment and run tests to
confirm the findings. If necessary, we would additionally build a PoC to demonstrate
the possibility of exploitation. The concrete list of check items is shown in Table 1.3.

• Basic Coding Bugs: We first statically analyze given smart contracts with our
proprietary static code analyzer for known coding bugs, and then manually
verify (reject or confirm) all the issues our tool finds.

• Code and business security testing: We further review business logic, examine
system operations, and place DeFi-related aspects under scrutiny to uncover
possible pitfalls and/or bugs.

• Additional Recommendations: We also provide additional suggestions
regarding the coding and development of smart contracts from the
perspective of proven programming practices.

Table 1.2: The Full List of Assessment Items
Category Assessment Item

Basic Coding Assessment

Apply Verification Control

Authorization Access Control
Forged Transfer Vulnerability
Forged Transfer Notification
Numeric Overflow

Transaction Rollback Attack
Transaction Block Stuffing Attack
Soft_fail Attack
Hard_fail Attack

Abnormal Memo

NUMEN CYBER

5 Confidential

	

To better describe each issue we identified, we categorize the findings with Common
Weakness Enumeration (CWE-699) [14], which is a community-developed list of
software weakness types to better delineate and organize weaknesses around
concepts frequently encountered in software development.

	

1.2	Disclaimer

Note	that	this	audit	does	not	give	any	warranties	on	finding	all	possible	security	issues	
of	the	given	smart	contract(s),	i.e.,	the	evaluation	result	does	not	guarantee	the	non-
existence	of	any	further	findings	of	security	issues.	As	one	audit-based	assessment	
cannot	be	considered	comprehensive,	we	always	recommend	proceeding	with	several	
independent	audits	and	a	public	bug	bounty	program	to	ensure	the	security	of	smart	
contract(s).	Last	but	not	least,	this	security	audit	should	not	be	used	as	investment	
advice.	

2	Findings Overview		

2.1	Summary

Severity # of Findings
Critical 0

Abnormal Resource Consumption
Secure Random Number

Advanced Source Code
Scrutiny

Asset Security

Cryptography Security
Business Logic Review
Source Code Functional Verification
Account Authorization Control

Sensitive Information Disclosure
Circuit Breaker
Blacklist Control
System API Call Analysis

Contract Deployment Consistency Check

Additional
Recommendations

Semantic Consistency Checks
Following Other Best Practices

NUMEN CYBER

6 Confidential

High 3
Medium 0

Low 2

Informational 4

Total 9

2.2 Key Findings

Three high severities findings identified relate to the omission of fee
calculation in currency mining. In addition, two are Low, and four are
Informational.

Table 2.1: Key Audit Findings
ID Severity Findings Title Status
NVE-001 High Incorrect Setting of MaxAmount and MaxLimit
NVE-002 High Improper Setting of Opening flag
NVE-003 High Risks in the authority transfer mechanism

NVE-004 Low
grantLimits Function is not compared with the
Total Supply of the token

NVE-005 Low giftLimit variable declared but not used
NVE-006 Informational Multiple Compiler Versions Declared
NVE-007 Informational Improper Usage Of Public Functions
NVE-008 Informational Missing Emit Events

NVE-009 Informational Optimization of Variable Type

3 Detailed Description of Findings	

3.1 Incorrect Setting of MaxAmount and MaxLimit

ID: NVE-001 Location: CrowdSale.sol
Severity: High Category: Business Issues	
Likelihood: Meduim
Impact: High

Description

NUMEN CYBER

7 Confidential

setMaxAmount should be smaller than TOTAL_SUPPLY and SetMaxLimit should be
smaller than the max value, if the max value is bigger then this will potentially lead to
mint amount exceeding TOTAL_SUPPLY by call preMint and pubMint in the first-time
call.
This is because function preMint and pubMint only compare the parameter _amount
with the limit and in the first time calling, token.current() is just 0, not updated yet, so
the code require(token.current() <= TOTAL_SUPPLY, "Exceeded total supply"); will be
executed successfully without any exception and if attacker get the owner privilege or
the project party itself has set a value greater than total_supply by mistake, which will
result in minting more than the total number of tokens:

function setMaxAmount(uint32 _amount)

 external

 onlyOwner

 onlyPositive(_amount)

{

 max = _amount;

 event SettedMaxAmount(max);

}

function setMaxLimit(uint32 _limit)

 external

 onlyOwner

 onlyPositive(_limit)

 {

 limit = _limit;

 }

Exploitation Steps:
Condition: the attacker gets the contract owner's private key, or the project set the
limit exceeding the TOTAL_SUPPLY by error.
1.Call setMaxLimit function with the value bigger than TOTAL_SUPPLY e.g:1000

NUMEN CYBER

8 Confidential

2.Call setOpening function and the parameter set to true when next step call preMint
or setClosing function and parameter set to true

3.Call preMint function with _amount =1000 or pubMint with _amount =1000

 function preMint(uint256 _amount)

 external

 payable

 onlyPositive(_amount)

 {

 require(opening, "PreSales time has not started");

 require(_amount <= limit, "More than one purchase");

 //require(msg.value == _amount.mul(preSalePrice), "Payment declined");

 require(token.current() <= TOTAL_SUPPLY, "Exceeded total supply");

 address miner = msg.sender;

 // require(hasRole(MINER_ROLE, miner), "Address not whitelisted");

 sold[miner] = _amount.add(sold[miner]);

 // (bool ok,) = quotas[miner].trySub(sold[miner]);

 // require(ok, "Exceeds Allocation");

 _asyncTransfer(collector, msg.value);

 token.mint(miner, _amount);

 }

 function pubMint(uint256 _amount) external payable onlyPositive(_amount) {

 require(closing, "PubSales time has not started");

 require(_amount <= limit, "More than one purchase");

 //require(msg.value == _amount.mul(publicSalePrice), "Payment declined");

 require(token.current() <= TOTAL_SUPPLY, "Exceeded total supply");

 address miner = msg.sender;

 sold[miner] = _amount.add(sold[miner]);

 // (bool ok,) = max.trySub(sold[miner]);

 // require(ok, "Exceeded maximum quantity limit");

 //_asyncTransfer(collector, msg.value);

 token.mint(miner, _amount);

 }

The following provides the evidence of exploiting the issue:

1. Set the erroneous Limit.

NUMEN CYBER

9 Confidential

2. Mint token exceeded the TOTAL_SUPPLY value

NUMEN CYBER

10 Confidential

3.result:

Recommendations
In function setMaxAmount, apply code to check the parameter _amount not bigger
than TOTAL_SUPPLY. In function setMaxLimit, apply code to check the _limit not
exceeding the value of max.

Following provides the enhanced code:

function setMaxAmount(uint32 _amount)

 external

 onlyOwner

 onlyPositive(_amount)

{

 require(_amount<TOTAL_SUPPLY, "new amount shoud bigger than before")

 max = _amount;

 emit SettedMaxAmount(max);

}

function setMaxLimit(uint32 _limit)

 external

 onlyOwner

 onlyPositive(_limit)

 {

 require(_limit<max, "new amount shoud bigger than before")

 limit = _limit;

NUMEN CYBER

11 Confidential

 emit SettedMaxLimit(_limit);

 }

3.2 Improper Setting of Opening flag

ID: NVE-002 Location: CrowdSale.sol
Severity: High Category: Business Issue
Likelihood: Low
Impact: Medium

Description
setOpening is used to set the start of presale status, setClosing is used to set the start
of the public sale, but the opening flag is not being set to false after calling
setClosing with the parameter set to true, which will allow the whitelist users perform
exchange of the token with the presale price after the presale stage.

 function setClosing(bool _closing) external onlyOwner {

 closing = _closing;

 emit PublicSaleStarted(closing);

 }

Recommendations
When the closing value is true, the opening flag should be set to false

Recommend fixed code:

function setClosing(bool _closing) external onlyOwner {

 closing = _closing;

 if(closing==true)

 {

 opening=false;

 }

 emit PublicSaleStarted(closing);

}

3.3 Risks in the authority transfer mechanism

ID: NVE-003 Location: CrowdSale.sol
Severity: High Category: Business Issues	
Likelihood: Meduim

NUMEN CYBER

12 Confidential

Impact: High

Description

In the function setPreSalePrice and setPublicSalePrice ，when the functions are

triggered, the owner will set the new PreSale price and public sale price.

In the contract CrowdSale.sol， the role onlyOwner has authority over the following

functions:
• setPreSalePrice(): set the new price at the presale
• setMaxAmount(): will set the max amount

• setOpening（）: set the start of presale status

• setClosing()： set the end of the presale flag

Compromise of onlyOwner account may allow a hacker to take advantage of this
authority

Exploitation Scenario:

In the event the private key of the owner was hacked or stolen.

Scenario 1: buy the NFT token with very low cost:
1. Attacker can call setPreSalePrice() with a very small the parameter
2. Then buys most of the NFT, which will cost very little ether

Scenario 2: enlarge the NFT total amount and the control the token price in
market

Recommendations
The risk describes the current project design and potentially makes iterations to
improve in the security operation and level of decentralization, which in most cases
cannot be resolved entirely at the present stage. We advise the client to carefully
manage the privileged account's private key to avoid any potential risks of being
hacked. In general, we strongly recommend centralized privileges or roles in the
protocol be improved via a decentralized mechanism or smart-contract-based
accounts with enhanced security practices, e.g., multi-signature wallets. Indicatively,
here are some feasible suggestions that would also mitigate the potential risk at a
different level in terms of short-term, long-term and permanent
Short Term:
Timelock and Multi sign (⅔, ⅗) combination mitigate by delaying the sensitive
operation and avoiding a single point of key management failure. Time-lock with
reasonable latency, e.g., 48 hours, for awareness on privileged operations; AND
Assignment of privileged roles to multi-signature wallets to prevent a single point of
failure due to the private key compromised; AND A medium/blog link for sharing the
timelock contract and multi-signers addresses information with the public audience.
Long Term:
Timelock and DAO, the combination, mitigate by applying decentralization and
transparency. Time-lock with reasonable latency, e.g., 48 hours, for awareness on

NUMEN CYBER

13 Confidential

privileged operations; AND Introduction of a DAO/governance/voting module to
increase transparency and user involvement; AND A medium/blog link for sharing the
timelock contract, multi-signers addresses, and DAO information with the public
audience.
Permanent:
Renouncing the ownership or removing the function can be considered fully resolved.
• Renounce the ownership and never claim back the privileged roles; OR
• Remove the risky functionality.
• Noted: Recommend considering the long-term solution or the permanent

solution. The project team shall make a decision based on the current state of
their project, timeline, and project resources

3.4 grantLimits Function is not compared with the Total Supply of

the token

ID: NVE-004 Location:CrowdSale.sol
Severity: Low Vulnerability Type: Business Issues
Likelihood: Low
Impact: Low

Description

The function grantLimits() is used to limit the max grant amount of the accounts, so it
is used to compare every account with max value.

However the comparison of the total amounts of token with the total supply is
missing. The total grant accounts' token amounts may be bigger than total
supply(777). e.g : for every account limit with the value of 10, and with 78
accounts, the total grant value will be 78*10 ,which will have 780 tokens
granted and exceeded the total supply of 777.

function grantLimits(address[] memory _accounts, uint256[] memory _limits)

 external

 onlyOwner

 {

 require(

 _accounts.length == _limits.length,

 "_accounts does not match _limits length"

);

 for (uint256 index = 0; index < _accounts.length; index++) {

 address account = _accounts[index];

 require(_limits[index] <= max, "Exceeded maximum quantity limit");

 quotas[account] = _limits[index];

NUMEN CYBER

14 Confidential

 //super.grantRole(MINER_ROLE, account);

 }

 }

Recommendation

At code line 3895, add a variable in the contract with the code: uint256 public
totalgrant=0 and initialize the value in function granLimits every time with 0, and
then calculate the sum of the limitation, after that in the for loop, compare the
totalgrant with TOTAL_SUPPLY, in this way grantLimits exceeding the total supply will
be prevented.

Enhanced Code:

 function grantLimits(address[] memory _accounts, uint256[] memory _limits)

 external

 onlyOwner

 {

 require(

 _accounts.length == _limits.length,

 "_accounts does not match _limits length"

);

 totalgrant=0;

 for (uint256 index = 0; index < _accounts.length; index++) {

 address account = _accounts[index];

 require(_limits[index] <= max, "Exceeded maximum quantity limit");

 quotas[account] = _limits[index];

 totalgrant = totalgrant + _limits[index];

 require(totalgrant < TOTAL_SUPPLY,"invaild grant limit");

 }

 }

3.5 giftLimit variable declared but not used

ID: NVE-005 Location:CrowdSale.sol
Severity: Low Vulnerability Type: Business Issues
Likelihood: Low
Impact: Low

Description
The variable giftLimit is seemingly used to limit the max amount of gift, but it is not
being declared in the contract code logic. The contract function gift(uint256

NUMEN CYBER

15 Confidential

_amount, bytes calldata signature) should use this value to limit the total gifts
amount to prevent exceeding the maximum gifts limitation.

Recommendation

Add a new variable e.g: uint256 public totalgift=0; at the line 3896, and in the
function gift, calculate the total gift every time the gift function is called, and then
compare the total gift value with giftLimit to prevent the gifts limit from exceeding
the giftLimit

Recommend fixed code:

 function gift(uint256 _amount, bytes calldata signature)

 external

 requiresGift(signature)

 {

 require(!opening, "Gift time is over");

 require(_amount <= limit, "More than one purchase");

 address miner = msg.sender;

 free[miner] = _amount.add(free[miner]);

 require(free[miner] <= max, "Exceeded maximum quantity limit");

 totalgift=totalgift+_amount;

 require(totalgift <= giftLimt,"Exceeded the maximum gifts limit");

 token.mint(miner, _amount);

 }

3.6 Multiple Compiler Versions Declared

ID: NVE-006
Severity: informational
Likelihood: informational

Location:
CrowdSale.sol, NFTERC721A.sol
Vulnerability Type: Compile Issues

Impact: informational

Description

The latest version of pragma solidity ^0.8.7 has been released on NFTERC721A.sol
and crowdsales.sol. Multiple solidity versions were used in the compiler components.
Inconsistent solidity versions can potentially lead to less secured solidity code and
less efficient gas optimization capabilities.

NUMEN CYBER

16 Confidential

NFTERC721A.sol
e.g：391：pragma solidity ^0.8.0;

 787: pragma solidity ^0.8.4;

Recommendations	
Remove redundant solidty compiler version declaration, keep only pragma solidity
^0.8.7

3.7 Improper Usage Of Public Functions

ID: NVE-007 Location:CrowdSale.sol,NFTERC721A.sol
Severity: Informational Category: Security Features
Likelihood: Informational
Impact: Informational

Description
‘Public’ functions that not being called in the contract should be declared as External
to save gas.

The below functions need to change from public to external:

CorwdSale.sol:

 function freeMinted(address _account) public view returns (uint256) {

 return free[_account];

 }

 function allowance(address _account) public view returns (uint256) {

 uint256 result;

 if (closing) {

 (, result) = max.trySub(sold[_account]);

 return result;

 }

 (, result) = quotas[_account].trySub(sold[_account]);

 return result;

 }

 function soldBy(address _account) public view returns (uint256) {

 return sold[_account];

 }

NFTERC721A.sol:

 function pause() public virtual {

 require(

NUMEN CYBER

17 Confidential

 hasRole(PAUSER_ROLE, _msgSender()),

 "NFT: must have pauser role to pause"

);

 _pause();

 }

 /**

 * @dev Unpauses all token transfers.

 *

 * See {ERC721Pausable} and {Pausable-_unpause}.

 *

 * Requirements:

 *

 * - the caller must have the `PAUSER_ROLE`.

 */

 function unpause() public virtual {

 require(

 hasRole(PAUSER_ROLE, _msgSender()),

 "NFT: must have pauser role to unpause"

);

 _unpause();

 }

 function current() public view returns (uint256) {

 return _totalMinted();

 }

 function contractURI() public view returns (string memory) {

 return collectionURI;

 }

 function setContractURI(string memory _contractURI) public onlyOwner {

 collectionURI = _contractURI;

 }

 /// @dev Sets the base token URI prefix.

 function setBaseTokenURI(string memory _baseTokenURI) public onlyOwner {

 baseTokenURI = _baseTokenURI;

 }

Recommendations	

NUMEN CYBER

18 Confidential

Consider using the external attribute for functions not being called from the contract

CorwdSale.sol:

 function freeMinted(address _account) external view returns (uint256) {

 return free[_account];

 }

 function allowance(address _account) external view returns (uint256) {

 uint256 result;

 if (closing) {

 (, result) = max.trySub(sold[_account]);

 return result;

 }

 (, result) = quotas[_account].trySub(sold[_account]);

 return result;

 }

 function soldBy(address _account) external view returns (uint256) {

 return sold[_account];

 }

 NFTERC721A.sol

 function pause() external virtual {

 require(

 hasRole(PAUSER_ROLE, _msgSender()),

 "NFT: must have pauser role to pause"

);

 _pause();

 }

 /**

 * @dev Unpauses all token transfers.

 *

 * See {ERC721Pausable} and {Pausable-_unpause}.

 *

 * Requirements:

 *

 * - the caller must have the `PAUSER_ROLE`.

 */

 function unpause() external virtual {

 require(

NUMEN CYBER

19 Confidential

 hasRole(PAUSER_ROLE, _msgSender()),

 "NFT: must have pauser role to unpause"

);

 _unpause();

 }

 function current() external view returns (uint256) {

 return _totalMinted();

 }

 function contractURI() external view returns (string memory) {

 return collectionURI;

 }

 function setContractURI(string memory _contractURI) external onlyOwner {

 collectionURI = _contractURI;

 }

 /// @dev Sets the base token URI prefix.

 function setBaseTokenURI(string memory _baseTokenURI) external onlyOwner {

 baseTokenURI = _baseTokenURI;

 }

3.8 Missing Emit Events

ID: NVE-008

Location:CrowdSale.sol

Severity: Informational Vulnerability Type: Business Issues
Likelihood: Informational
Impact: Informational

Description

The function pauseClaimablePeriod() affects the sensitive status of the contract and
should emit events as notifications to users.

 function setMaxAmount(uint32 _amount)

 external

 onlyOwner

 onlyPositive(_amount)

 {

 max = _amount;

 }

NUMEN CYBER

20 Confidential

 function setMaxLimit(uint32 _limit)

 external

 onlyOwner

 onlyPositive(_limit)

 {

 limit = _limit;

 }

	
Recommendations	

Consider adding an event for the sensitive actions, and emit it in the function in
CrowdSale.sol

function setMaxAmount(uint32 _amount)

 external

 onlyOwner

 onlyPositive(_amount)

{

 require(_amount<TOTAL_SUPPLY, "new amount shoud not bigger than TOTAL_SUPPLY")

 max = _amount;

 emit SettedMaxAmount(max);

}

function setMaxLimit(uint32 _limit)

 external

 onlyOwner

 onlyPositive(_limit)

 {

 require(_limit<max, "limit should not bigger than max")

 limit = _limit;

 emit SettedMaxLimit(_limit);

 }

3.9 Optimization of Variable Type

ID: NVE-009 Location: CrowdSale.sol
Severity: Informational Vulnerability Type: Business Issues
Likelihood: Informational
Impact: Informational

Constant state variables should be declared as constant to save gas.

NUMEN CYBER

21 Confidential

 uint256 public TOTAL_SUPPLY = 777;
Recommendations:

Set TOTAL_SUPPLY variable to const as shown in the following code snippet:
uint256 public constant TOTAL_SUPPLY = 777;

4	Conclusion

In this audit, we thoroughly analyzed NFTSTART smart contract implementation. The

findings outlined in section 1.4 require corrective actions and attention. To improve
this report, we greatly appreciate any constructive feedback or suggestions, on our
methodology, audit findings, or potential gaps in scope/coverage.

5	Appendix	

5.1 Basic Coding Assessment

5.1.1 Apply Verification Control

• Description: The security of apply verification
• Result: Not found
• Severity: Critical

5.1.2 Authorization Access Control

• Description: Permission checks for external integral functions

NUMEN CYBER

22 Confidential

• Result: Not found
• Severity: Critical

5.1.3 Forged Transfer Vulnerability

• Description: Assess whether there is a forged transfer notification vulnerability
in the contract
• Result: Not found
• Severity: Critical

5.1.4 Transaction Rollback Attack

• Description: Assess whether there is transaction rollback attack vulnerability in
the contract.
• Result: Not found
• Severity: Critical

5.1.5 Transaction Block Stuffing Attack

• Description: Assess whether there is transaction blocking attack vulnerability.
• Result: Not found
• Severity: Critical

5.1.6 soft_fail Attack Assessment

• Description: Assess whether there is soft_fail attack vulnerability.
• Result: Not found
• Severity: Critical

5.1.7 hard_fail Attack Assessment

• Description: Examine for hard_fail attack vulnerability
• Result: Not found
• Severity: Critical

5.1.8 Abnormal Memo Assessment

• Description: Assess whether there is abnormal memo vulnerability in the
contract.
• Result: Not found
• Severity: Critical

5.1.9 Abnormal Resource Consumption

• Description: Examine whether abnormal resource consumption in contract
processing.

NUMEN CYBER

23 Confidential

• Result: Not found
• Severity: Critical

5.1.10 Random Number Security

• Description: Examine whether the code uses insecure random number.
• Result: Not found
• Severity: Critical

5.2 Advanced Code Scrutiny

5.2.1 Cryptography Security

• Description: Examine for weakness in cryptograph implementation.
• Results: Not Found
• Severity: High

5.2.2 Account Permission Control

• Description: Examine permission control issue in the contract
• Results: Not Found
• Severity: Medium

5.2.3 Malicious Code Behaviour

• Description: Examine whether sensitive behaviour present in the code
• Results: Not found
• Severity: Medium

5.2.4 Sensitive Information Disclosure

• Description: Examine whether sensitive information disclosure issue present in
the code.
• Result: Not found
• Severity: Medium

5.2.5 System API

• Description: Examine whether system API application issue present in the code
• Results: Not found
• Severity: Low

NUMEN CYBER

24 Confidential

References

[1] MITRE. CWE-191: Integer Underflow (Wrap or Wraparound).
https://cwe.mitre.org/data/ definitions/191.html.

[2] MITRE. CWE-197: Numeric Truncation Error.
https://cwe.mitre.org/data/definitions/197. html.

[3] MITRE. CWE-400: Uncontrolled Resource Consumption.
https://cwe.mitre.org/data/ definitions/400.html.

[4] MITRE. CWE-440: Expected Behavior Violation.
https://cwe.mitre.org/data/definitions/440. html.

[5] MITRE. CWE-684: Protection Mechanism Failure.
https://cwe.mitre.org/data/definitions/ 693.html.

[6] MITRE. CWE CATEGORY: 7PK - Security Features.
https://cwe.mitre.org/data/definitions/ 254.html.

NUMEN CYBER

25 Confidential

[7] MITRE. CWE CATEGORY: Behavioral Problems.
https://cwe.mitre.org/data/definitions/438. html.

[8] MITRE. CWE CATEGORY: Numeric Errors.
https://cwe.mitre.org/data/definitions/189.html.

[9] MITRE. CWE CATEGORY: Resource Management Errors.
https://cwe.mitre.org/data/ definitions/399.html.

[10] OWASP. Risk Rating Methodology.
https://www.owasp.org/index.php/OWASP_Risk_ Rating_Methodology.

